All functions

as.data.frame(<dce>)

Dce to data frame

as_adjmat()

graph to adjacency

create_random_DAG()

Create random DAG (topologically ordered)

dce()

Differential Causal Effects - main function

dce_nb()

Differential Causal Effects for negative binomial data

df_pathway_statistics

Biological pathway information.

estimate_latent_count()

Estimate number of latent confounders Compute the true casual effects of a simulated dag

g2dag()

Graph to DAG

get_pathway_info()

Dataframe containing meta-information of pathways in database

get_pathways()

Easy pathway network access

get_prediction_counts()

Compute true positive/... counts

graph2df()

Graph to data frame

graph_union()

Graph union

pcor()

Partial correlation

permutation_test()

Permutation test for (partial) correlation on non-Gaussian data

plot(<dce>)

Plot dce object

plot_network()

Plot network adjacency matrix

propagate_gene_edges()

Remove non-gene nodes from pathway and reconnect nodes

resample_edge_weights()

Resample network edge weights

rlm_dce()

costum rlm function

simulate_data()

Simulate data

summary(<rlm_dce>)

summary for rlm_dce

topologically_ordering()

Topological ordering

trueEffects()

Compute the true casual effects of a simulated dag