Generate data for given DAG. The flexible framework allows for different distributions for source and child nodes. Default distributions are negative binomial (with mean = 100 and 1/dispersion = 100), and poisson, respectively.

simulate_data(
  graph,
  n = 100,
  dist_fun = rnbinom,
  dist_args = list(mu = 1000, size = 100),
  child_fun = rpois,
  child_args = list(),
  child_dep = "lambda",
  link_fun = negative.binomial.special()$linkfun,
  link_args = list(offset = 1),
  pop_size = 0,
  latent = 0,
  latent_fun = "unif"
)

# S4 method for igraph
simulate_data(
  graph,
  n = 100,
  dist_fun = rnbinom,
  dist_args = list(mu = 1000, size = 100),
  child_fun = rpois,
  child_args = list(),
  child_dep = "lambda",
  link_fun = negative.binomial.special()$linkfun,
  link_args = list(offset = 1),
  pop_size = 0,
  latent = 0,
  latent_fun = "unif"
)

# S4 method for graphNEL
simulate_data(
  graph,
  n = 100,
  dist_fun = rnbinom,
  dist_args = list(mu = 1000, size = 100),
  child_fun = rpois,
  child_args = list(),
  child_dep = "lambda",
  link_fun = negative.binomial.special()$linkfun,
  link_args = list(offset = 1),
  pop_size = 0,
  latent = 0,
  latent_fun = "unif"
)

# S4 method for matrix
simulate_data(
  graph,
  n = 100,
  dist_fun = rnbinom,
  dist_args = list(mu = 1000, size = 100),
  child_fun = rpois,
  child_args = list(),
  child_dep = "lambda",
  link_fun = negative.binomial.special()$linkfun,
  link_args = list(offset = 1),
  pop_size = 0,
  latent = 0,
  latent_fun = "unif"
)

Arguments

graph

Graph to simulate on

n

Number of samples

dist_fun

distribution function for nodes without parents

dist_args

list of arguments for dist_fun

child_fun

distribution function for nodes with parents

child_args

list of arguments for child_fun

child_dep

link_fun computes an output for the expression of nodes without parents. this output is than used as input for child_fun. child_dep defines the parameter (a a string) of child_fun, which is used for the input. E.g., the link_fun is the identity and the child_fun is rnorm, we usually set child_dep = "mean".

link_fun

special link function for the negative binomial distribution

link_args

list of arguments for link_fun

pop_size

numeric for the population size, e.g., pop_size=1000 adds 1000-n random genes not in the graph

latent

number of latent variables

latent_fun

uniform "unif" or exponential "exp" distribution of latent coefficients

Value

graph

Examples

dag <- create_random_DAG(30, 0.2)
X <- simulate_data(dag)