Function reference
-
Asia
- Asia dataset
-
Asiamat
- Asiamat
-
initialize(<BN>)
BN()
- BN class definition.
-
BNDataset()
initialize(<BNDataset>)
- BNDataset class.
-
initialize(<InferenceEngine>)
InferenceEngine()
- InferenceEngine class.
-
`add.observations<-`()
- add further evidence to an existing list of observations of an
InferenceEngine
.
-
approxInference()
- Importance Sampling (IS) in Bayesian Networks
-
belief.propagation()
- perform belief propagation.
-
benchmarkMultipleNets()
- Benchmark Inference Methods
-
bn()
- get the
BN
object contained in anInferenceEngine
.
-
`bn<-`()
- set the original
BN
object contained in anInferenceEngine
.
-
boot()
- get selected element of bootstrap list.
-
`boots<-`()
- set list of bootstrap samples of a
BNDataset
.
-
boots()
- get list of bootstrap samples of a
BNDataset
.
-
bootstrap()
- Perform bootstrap.
-
build.junction.tree()
- build a JunctionTree.
-
complete()
- Subset a
BNDataset
to get only complete cases.
-
convertBNBestieToSGS()
- Bayesian network Conversion Bestie to SGS format
-
convertCPTsBestieToSGS()
- CPTs Conversion Bestie to SGS format
-
`cpts<-`()
- set the list of conditional probability tables of a network.
-
cpts()
- get the list of conditional probability tables of a
BN
.
-
`dag<-`()
- set adjacency matrix of an object.
-
dag()
- get adjacency matrix of a network.
-
dag.to.cpdag()
- convert a DAG to a CPDAG
-
`data.file<-`()
- set data file of a
BNDataset
.
-
data.file()
- get data file of a
BNDataset
.
-
`discreteness<-`()
- set status (discrete or continuous) of the variables of an object.
-
discreteness()
- get status (discrete or continuous) of the variables of an object.
-
edge.dir.wpdag()
- counts the edges in a WPDAG with their directionality
-
em()
- expectation-maximization algorithm.
-
exactInference()
- Exact inference via SupGroupSeparation
-
get.allAncestors()
- Get relevant DAG nodes (ancestors)
-
get.allSubGroups()
- Get All Conditionally Independent Subgroups (CIS)
-
get.most.probable.values()
- compute the most probable values to be observed.
-
get.subGroup()
- Get Conditionally Independent Subgroup (CIS)
-
has.boots()
- check whether a
BNDataset
has bootstrap samples or not.
-
has.imputed.boots()
- check whether a
BNDataset
has bootstrap samples from imputed data or not.
-
has.imputed.data()
- check if a BNDataset contains impited data.
-
has.raw.data()
- check if a BNDataset contains raw data.
-
`header.file<-`()
- set header file of a
BNDataset
.
-
header.file()
- get header file of a
BNDataset
.
-
`imp.boots<-`()
- set list of bootstrap samples from imputed data of a
BNDataset
.
-
imp.boots()
- get list of bootstrap samples from imputed data of a
BNDataset
.
-
impute()
- Impute a
BNDataset
raw data with missing values.
-
`imputed.data<-`()
- add imputed data.
-
imputed.data()
- get imputed data of a BNDataset.
-
`interventions<-`()
- set the list of interventions for an
InferenceEngine
.
-
interventions()
- get the list of interventions of an
InferenceEngine
.
-
`jpts<-`()
- set the list of joint probability tables compiled by an
InferenceEngine
.
-
jpts()
- get the list of joint probability tables compiled by an
InferenceEngine
.
-
`jt.cliques<-`()
- set the list of cliques of the junction tree of an
InferenceEngine
.
-
jt.cliques()
- get the list of cliques of the junction tree of an
InferenceEngine
.
-
`junction.tree<-`()
- set the junction tree of an
InferenceEngine
.
-
junction.tree()
- get the junction tree of an
InferenceEngine
.
-
knn.impute()
- Perform imputation of a data frame using k-NN.
-
layering()
- return the layering of the nodes.
-
learn.dynamic.network()
- learn a dynamic network (structure and parameters) of a BN from a BNDataset.
-
learn.network()
- learn a network (structure and parameters) of a BN from a BNDataset.
-
learn.params()
- learn the parameters of a BN.
-
learn.structure()
- learn the structure of a network.
-
learn_bn()
- learn_bn
-
loopy_belief.propagation()
- perform LOOPY belief propagation.
-
makeAllPlots()
- Visualize benchmark results
-
marginals()
- compute the list of inferred marginals of a BN.
-
`name<-`()
- set name of an object.
-
name()
- get name of an object.
-
`node.sizes<-`()
- set the size of variables of an object.
-
node.sizes()
- get size of the variables of an object.
-
`num.boots<-`()
- set number of bootstrap samples of a
BNDataset
.
-
num.boots()
- get number of bootstrap samples of a
BNDataset
.
-
`num.items<-`()
- set number of items of a
BNDataset
.
-
num.items()
- get number of items of a
BNDataset
.
-
`num.nodes<-`()
- set number of nodes of an object.
-
num.nodes()
- get number of nodes of an object.
-
`num.time.steps<-`()
- set number of time steps of a
BN
or aBNDataset
.
-
num.time.steps()
- get number of time steps observed in a
BN
or aBNDataset
.
-
`num.variables<-`()
- set number of variables of a
BNDataset
.
-
num.variables()
- get number of variables of a
BNDataset
.
-
`observations<-`()
- set the list of observations of an
InferenceEngine
.
-
observations()
- get the list of observations of an
InferenceEngine
.
-
plot(<BN>)
- plot a
BN
as a picture.
-
plot_bn()
- plot_bn
-
plot_dag()
- plot_dag
-
print(<BN>)
print(<BNDataset>)
print(<InferenceEngine>)
- print a
BN
,BNDataset
orInferenceEngine
tostdout
.
-
`quantiles<-`()
- set the list of quantiles of an object.
-
quantiles()
- get the list of quantiles of an object.
-
randomBN()
- Create random Bayesian network
-
`raw.data<-`()
- add raw data.
-
raw.data()
- get raw data of a BNDataset.
-
read.bif()
- Read a network from a
.bif
file.
-
read.dataset()
- Read a dataset from file.
-
read.dsc()
- Read a network from a
.dsc
file.
-
read.net()
- Read a network from a
.net
file.
-
sample.dataset()
- sample a
BNDataset
from a network of an inference engine.
-
sample.row()
- sample a row vector of values for a network.
-
sample.subGroupSampling()
- Sub Group Sampling (SGS) in Bayesian Networks
-
`scoring.func<-`()
- Set the scoring function used to learn the structure of a network.
-
scoring.func()
- Read the scoring function used to learn the structure of a network.
-
shd()
- compute the Structural Hamming Distance between two adjacency matrices.
-
show()
- Show method for objects.
-
`struct.algo<-`()
- Set the algorithm used to learn the structure of a network.
-
struct.algo()
- Read the algorithm used to learn the structure of a network.
-
sub_belief.propagation()
- perform SUB belief propagation.
-
test.updated.bn()
- check if an updated
BN
is present in anInferenceEngine
.
-
tune.knn.impute()
- tune the parameter k of the knn algorithm used in imputation.
-
updated.bn()
- get the updated
BN
object contained in anInferenceEngine
.
-
`updated.bn<-`()
- set the updated
BN
object contained in anInferenceEngine
.
-
`variables<-`()
- set variables of an object.
-
variables()
- get variables of an object.
-
`wpdag<-`()
- set WPDAG of the object.
-
wpdag()
- get the WPDAG of an object.
-
wpdag.from.dag()
- Initialize a WPDAG from a DAG.
-
write.dsc()
- Write a network saving it in a
.dsc
file.
-
write_xgmml()
- Write a network saving it in an
XGMML
file.