Function reference
-
Asia - Asia dataset
-
Asiamat - Asiamat
-
initialize(<BN>)BN() - BN class definition.
-
BNDataset()initialize(<BNDataset>) - BNDataset class.
-
initialize(<InferenceEngine>)InferenceEngine() - InferenceEngine class.
-
`add.observations<-`() - add further evidence to an existing list of observations of an
InferenceEngine.
-
approxInference() - Importance Sampling (IS) in Bayesian Networks
-
belief.propagation() - perform belief propagation.
-
benchmarkMultipleNets() - Benchmark Inference Methods
-
bn() - get the
BNobject contained in anInferenceEngine.
-
`bn<-`() - set the original
BNobject contained in anInferenceEngine.
-
boot() - get selected element of bootstrap list.
-
`boots<-`() - set list of bootstrap samples of a
BNDataset.
-
boots() - get list of bootstrap samples of a
BNDataset.
-
bootstrap() - Perform bootstrap.
-
build.junction.tree() - build a JunctionTree.
-
complete() - Subset a
BNDatasetto get only complete cases.
-
convertBNBestieToSGS() - Bayesian network Conversion Bestie to SGS format
-
convertCPTsBestieToSGS() - CPTs Conversion Bestie to SGS format
-
`cpts<-`() - set the list of conditional probability tables of a network.
-
cpts() - get the list of conditional probability tables of a
BN.
-
`dag<-`() - set adjacency matrix of an object.
-
dag() - get adjacency matrix of a network.
-
dag.to.cpdag() - convert a DAG to a CPDAG
-
`data.file<-`() - set data file of a
BNDataset.
-
data.file() - get data file of a
BNDataset.
-
`discreteness<-`() - set status (discrete or continuous) of the variables of an object.
-
discreteness() - get status (discrete or continuous) of the variables of an object.
-
edge.dir.wpdag() - counts the edges in a WPDAG with their directionality
-
em() - expectation-maximization algorithm.
-
exactInference() - Exact inference via SupGroupSeparation
-
get.allAncestors() - Get relevant DAG nodes (ancestors)
-
get.allSubGroups() - Get All Conditionally Independent Subgroups (CIS)
-
get.most.probable.values() - compute the most probable values to be observed.
-
get.subGroup() - Get Conditionally Independent Subgroup (CIS)
-
has.boots() - check whether a
BNDatasethas bootstrap samples or not.
-
has.imputed.boots() - check whether a
BNDatasethas bootstrap samples from imputed data or not.
-
has.imputed.data() - check if a BNDataset contains impited data.
-
has.raw.data() - check if a BNDataset contains raw data.
-
`header.file<-`() - set header file of a
BNDataset.
-
header.file() - get header file of a
BNDataset.
-
`imp.boots<-`() - set list of bootstrap samples from imputed data of a
BNDataset.
-
imp.boots() - get list of bootstrap samples from imputed data of a
BNDataset.
-
impute() - Impute a
BNDatasetraw data with missing values.
-
`imputed.data<-`() - add imputed data.
-
imputed.data() - get imputed data of a BNDataset.
-
`interventions<-`() - set the list of interventions for an
InferenceEngine.
-
interventions() - get the list of interventions of an
InferenceEngine.
-
`jpts<-`() - set the list of joint probability tables compiled by an
InferenceEngine.
-
jpts() - get the list of joint probability tables compiled by an
InferenceEngine.
-
`jt.cliques<-`() - set the list of cliques of the junction tree of an
InferenceEngine.
-
jt.cliques() - get the list of cliques of the junction tree of an
InferenceEngine.
-
`junction.tree<-`() - set the junction tree of an
InferenceEngine.
-
junction.tree() - get the junction tree of an
InferenceEngine.
-
knn.impute() - Perform imputation of a data frame using k-NN.
-
layering() - return the layering of the nodes.
-
learn.dynamic.network() - learn a dynamic network (structure and parameters) of a BN from a BNDataset.
-
learn.network() - learn a network (structure and parameters) of a BN from a BNDataset.
-
learn.params() - learn the parameters of a BN.
-
learn.structure() - learn the structure of a network.
-
learn_bn() - learn_bn
-
loopy_belief.propagation() - perform LOOPY belief propagation.
-
makeAllPlots() - Visualize benchmark results
-
marginals() - compute the list of inferred marginals of a BN.
-
`name<-`() - set name of an object.
-
name() - get name of an object.
-
`node.sizes<-`() - set the size of variables of an object.
-
node.sizes() - get size of the variables of an object.
-
`num.boots<-`() - set number of bootstrap samples of a
BNDataset.
-
num.boots() - get number of bootstrap samples of a
BNDataset.
-
`num.items<-`() - set number of items of a
BNDataset.
-
num.items() - get number of items of a
BNDataset.
-
`num.nodes<-`() - set number of nodes of an object.
-
num.nodes() - get number of nodes of an object.
-
`num.time.steps<-`() - set number of time steps of a
BNor aBNDataset.
-
num.time.steps() - get number of time steps observed in a
BNor aBNDataset.
-
`num.variables<-`() - set number of variables of a
BNDataset.
-
num.variables() - get number of variables of a
BNDataset.
-
`observations<-`() - set the list of observations of an
InferenceEngine.
-
observations() - get the list of observations of an
InferenceEngine.
-
plot(<BN>) - plot a
BNas a picture.
-
plot_bn() - plot_bn
-
plot_dag() - plot_dag
-
print(<BN>)print(<BNDataset>)print(<InferenceEngine>) - print a
BN,BNDatasetorInferenceEnginetostdout.
-
`quantiles<-`() - set the list of quantiles of an object.
-
quantiles() - get the list of quantiles of an object.
-
randomBN() - Create random Bayesian network
-
`raw.data<-`() - add raw data.
-
raw.data() - get raw data of a BNDataset.
-
read.bif() - Read a network from a
.biffile.
-
read.dataset() - Read a dataset from file.
-
read.dsc() - Read a network from a
.dscfile.
-
read.net() - Read a network from a
.netfile.
-
sample.dataset() - sample a
BNDatasetfrom a network of an inference engine.
-
sample.row() - sample a row vector of values for a network.
-
sample.subGroupSampling() - Sub Group Sampling (SGS) in Bayesian Networks
-
`scoring.func<-`() - Set the scoring function used to learn the structure of a network.
-
scoring.func() - Read the scoring function used to learn the structure of a network.
-
shd() - compute the Structural Hamming Distance between two adjacency matrices.
-
show() - Show method for objects.
-
`struct.algo<-`() - Set the algorithm used to learn the structure of a network.
-
struct.algo() - Read the algorithm used to learn the structure of a network.
-
sub_belief.propagation() - perform SUB belief propagation.
-
test.updated.bn() - check if an updated
BNis present in anInferenceEngine.
-
tune.knn.impute() - tune the parameter k of the knn algorithm used in imputation.
-
updated.bn() - get the updated
BNobject contained in anInferenceEngine.
-
`updated.bn<-`() - set the updated
BNobject contained in anInferenceEngine.
-
`variables<-`() - set variables of an object.
-
variables() - get variables of an object.
-
`wpdag<-`() - set WPDAG of the object.
-
wpdag() - get the WPDAG of an object.
-
wpdag.from.dag() - Initialize a WPDAG from a DAG.
-
write.dsc() - Write a network saving it in a
.dscfile.
-
write_xgmml() - Write a network saving it in an
XGMMLfile.