Skip to contents

All functions

Asia
Asia dataset
Asiamat
Asiamat
initialize(<BN>) BN()
BN class definition.
BNDataset() initialize(<BNDataset>)
BNDataset class.
initialize(<InferenceEngine>) InferenceEngine()
InferenceEngine class.
`add.observations<-`()
add further evidence to an existing list of observations of an InferenceEngine.
approxInference()
Importance Sampling (IS) in Bayesian Networks
belief.propagation()
perform belief propagation.
benchmarkMultipleNets()
Benchmark Inference Methods
bn()
get the BN object contained in an InferenceEngine.
`bn<-`()
set the original BN object contained in an InferenceEngine.
boot()
get selected element of bootstrap list.
`boots<-`()
set list of bootstrap samples of a BNDataset.
boots()
get list of bootstrap samples of a BNDataset.
bootstrap()
Perform bootstrap.
build.junction.tree()
build a JunctionTree.
complete()
Subset a BNDataset to get only complete cases.
convertBNBestieToSGS()
Bayesian network Conversion Bestie to SGS format
convertCPTsBestieToSGS()
CPTs Conversion Bestie to SGS format
`cpts<-`()
set the list of conditional probability tables of a network.
cpts()
get the list of conditional probability tables of a BN.
`dag<-`()
set adjacency matrix of an object.
dag()
get adjacency matrix of a network.
dag.to.cpdag()
convert a DAG to a CPDAG
`data.file<-`()
set data file of a BNDataset.
data.file()
get data file of a BNDataset.
`discreteness<-`()
set status (discrete or continuous) of the variables of an object.
discreteness()
get status (discrete or continuous) of the variables of an object.
edge.dir.wpdag()
counts the edges in a WPDAG with their directionality
em()
expectation-maximization algorithm.
exactInference()
Exact inference via SupGroupSeparation
get.allAncestors()
Get relevant DAG nodes (ancestors)
get.allSubGroups()
Get All Conditionally Independent Subgroups (CIS)
get.most.probable.values()
compute the most probable values to be observed.
get.subGroup()
Get Conditionally Independent Subgroup (CIS)
has.boots()
check whether a BNDataset has bootstrap samples or not.
has.imputed.boots()
check whether a BNDataset has bootstrap samples from imputed data or not.
has.imputed.data()
check if a BNDataset contains impited data.
has.raw.data()
check if a BNDataset contains raw data.
`header.file<-`()
set header file of a BNDataset.
header.file()
get header file of a BNDataset.
`imp.boots<-`()
set list of bootstrap samples from imputed data of a BNDataset.
imp.boots()
get list of bootstrap samples from imputed data of a BNDataset.
impute()
Impute a BNDataset raw data with missing values.
`imputed.data<-`()
add imputed data.
imputed.data()
get imputed data of a BNDataset.
`interventions<-`()
set the list of interventions for an InferenceEngine.
interventions()
get the list of interventions of an InferenceEngine.
`jpts<-`()
set the list of joint probability tables compiled by an InferenceEngine.
jpts()
get the list of joint probability tables compiled by an InferenceEngine.
`jt.cliques<-`()
set the list of cliques of the junction tree of an InferenceEngine.
jt.cliques()
get the list of cliques of the junction tree of an InferenceEngine.
`junction.tree<-`()
set the junction tree of an InferenceEngine.
junction.tree()
get the junction tree of an InferenceEngine.
knn.impute()
Perform imputation of a data frame using k-NN.
layering()
return the layering of the nodes.
learn.dynamic.network()
learn a dynamic network (structure and parameters) of a BN from a BNDataset.
learn.network()
learn a network (structure and parameters) of a BN from a BNDataset.
learn.params()
learn the parameters of a BN.
learn.structure()
learn the structure of a network.
learn_bn()
learn_bn
loopy_belief.propagation()
perform LOOPY belief propagation.
makeAllPlots()
Visualize benchmark results
marginals()
compute the list of inferred marginals of a BN.
`name<-`()
set name of an object.
name()
get name of an object.
`node.sizes<-`()
set the size of variables of an object.
node.sizes()
get size of the variables of an object.
`num.boots<-`()
set number of bootstrap samples of a BNDataset.
num.boots()
get number of bootstrap samples of a BNDataset.
`num.items<-`()
set number of items of a BNDataset.
num.items()
get number of items of a BNDataset.
`num.nodes<-`()
set number of nodes of an object.
num.nodes()
get number of nodes of an object.
`num.time.steps<-`()
set number of time steps of a BN or a BNDataset.
num.time.steps()
get number of time steps observed in a BN or a BNDataset.
`num.variables<-`()
set number of variables of a BNDataset.
num.variables()
get number of variables of a BNDataset.
`observations<-`()
set the list of observations of an InferenceEngine.
observations()
get the list of observations of an InferenceEngine.
plot(<BN>)
plot a BN as a picture.
plot_bn()
plot_bn
plot_dag()
plot_dag
print(<BN>) print(<BNDataset>) print(<InferenceEngine>)
print a BN, BNDataset or InferenceEngine to stdout.
`quantiles<-`()
set the list of quantiles of an object.
quantiles()
get the list of quantiles of an object.
randomBN()
Create random Bayesian network
`raw.data<-`()
add raw data.
raw.data()
get raw data of a BNDataset.
read.bif()
Read a network from a .bif file.
read.dataset()
Read a dataset from file.
read.dsc()
Read a network from a .dsc file.
read.net()
Read a network from a .net file.
sample.dataset()
sample a BNDataset from a network of an inference engine.
sample.row()
sample a row vector of values for a network.
sample.subGroupSampling()
Sub Group Sampling (SGS) in Bayesian Networks
`scoring.func<-`()
Set the scoring function used to learn the structure of a network.
scoring.func()
Read the scoring function used to learn the structure of a network.
shd()
compute the Structural Hamming Distance between two adjacency matrices.
show()
Show method for objects.
`struct.algo<-`()
Set the algorithm used to learn the structure of a network.
struct.algo()
Read the algorithm used to learn the structure of a network.
sub_belief.propagation()
perform SUB belief propagation.
test.updated.bn()
check if an updated BN is present in an InferenceEngine.
tune.knn.impute()
tune the parameter k of the knn algorithm used in imputation.
updated.bn()
get the updated BN object contained in an InferenceEngine.
`updated.bn<-`()
set the updated BN object contained in an InferenceEngine.
`variables<-`()
set variables of an object.
variables()
get variables of an object.
`wpdag<-`()
set WPDAG of the object.
wpdag()
get the WPDAG of an object.
wpdag.from.dag()
Initialize a WPDAG from a DAG.
write.dsc()
Write a network saving it in a .dsc file.
write_xgmml()
Write a network saving it in an XGMML file.