Learn the parameters of a BN object according to a BNDataset using MAP (Maximum A Posteriori) estimation.
Usage
learn.params(bn, dataset, ess = 1, use.imputed.data = F)
# S4 method for BN,BNDataset
learn.params(bn, dataset, ess = 1, use.imputed.data = FALSE)
Value
new BN
object with conditional probabilities.
Details
Parameter learning is not possible in case of networks learnt using the mmpc
algorithm,
or from bootstrap samples, as there may be loops.
Examples
if (FALSE) {
## first create a BN and learn its structure from a dataset
dataset <- BNDataset("file.header", "file.data")
bn <- BN(dataset)
bn <- learn.structure(bn, dataset)
bn <- learn.params(bn, dataset, ess=1)
}