Perform bootstrap.
bootstrap.Rd
Create a list of num.boots
samples of the original dataset.
Usage
bootstrap(object, num.boots = 100, seed = 0, imputation = FALSE, k.impute = 10)
# S4 method for BNDataset
bootstrap(object, num.boots = 100, seed = 0, imputation = FALSE, k.impute = 10)
Arguments
- object
the
BNDataset
object.- num.boots
number of sampled datasets for bootstrap.
- seed
random seed.
- imputation
TRUE
if imputation has to be performed. Default isFALSE
.- k.impute
number of neighbours to be used; for discrete variables we use mode, for continuous variables the median value is instead taken (useful only if imputation == TRUE).
Examples
if (FALSE) {
dataset <- BNDataset("file.data", "file.header")
dataset <- bootstrap(dataset, num.boots = 1000)
}