Skip to contents

Learn parameters of a network using the Expectation-Maximization algorithm.

Usage

em(x, dataset, threshold = 0.001, max.em.iterations = 10, ess = 1)

# S4 method for InferenceEngine,BNDataset
em(x, dataset, threshold = 0.001, max.em.iterations = 10, ess = 1)

Arguments

x

an InferenceEngine.

dataset

observed dataset with missing values for the Bayesian Network of x.

threshold

threshold for convergence, used as stopping criterion.

max.em.iterations

maximum number of iterations to run in case of no convergence.

ess

Equivalent Sample Size value.

Value

a list containing: an InferenceEngine with a new updated network ("InferenceEngine"), and the imputed dataset ("BNDataset").

Examples

if (FALSE) {
em(x, dataset)
}