The resulting object can be passed to any method from the enrichplot package and thus allows for nice visualizations of the enrichment results. Note: term similarities are included if available.

as_enrichplot_object(x, pvalue_threshold = 0.05)

Arguments

x

An object of class pareg.

pvalue_threshold

Treshold to select genes for count statistics.

Value

Object of class enrichResult.

Examples

df_genes <- data.frame(
  gene = paste("g", 1:20, sep = ""),
  pvalue = c(
    rbeta(10, .1, 1),
    rbeta(10, 1, 1)
  )
)
df_terms <- rbind(
  data.frame(
    term = "foo",
    gene = paste("g", 1:10, sep = "")
  ),
  data.frame(
    term = "bar",
    gene = paste("g", 11:20, sep = "")
  )
)
fit <- pareg(df_genes, df_terms, max_iterations = 10)
as_enrichplot_object(fit)
#> #
#> # over-representation test
#> #
#> #...@organism 	  
#> #...@ontology 	 UNKNOWN 
#> #...@gene 	 chr [1:8] "g4" "g5" "g6" "g7" "g8" "g9" "g10" "g18"
#> #...pvalues adjusted by '' with cutoff < 
#> #...2 enriched terms found
#> 'data.frame':	2 obs. of  8 variables:
#>  $ enrichment : num  -0.753 -0.574
#>  $ term_size  : int  10 10
#>  $ ID         : chr  "bar" "foo"
#>  $ Description: chr  "bar" "foo"
#>  $ p.adjust   : num  -0.753 -0.574
#>  $ Count      : int  1 7
#>  $ GeneRatio  : chr  "1/10" "7/10"
#>  $ geneID     : chr  "g11/g12/g13/g14/g15/g16/g17/g18/g19/g20" "g1/g2/g3/g4/g5/g6/g7/g8/g9/g10"
#>  - attr(*, "groups")= tibble [2 × 1] (S3: tbl_df/tbl/data.frame)
#>   ..$ .rows: list<int> [1:2] 
#>   .. ..$ : int 1
#>   .. ..$ : int 2
#>   .. ..@ ptype: int(0) 
#> #...Citation
#>  T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L Zhan, X Fu, S Liu, X Bo, and G Yu.
#>  clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
#>  The Innovation. 2021, 2(3):100141 
#>