Prepare deconvoluted data with LolliPop for Covvfit
Here we explain how to prepare input for Covvfit using the LolliPop tool.
We need to deconvolute wastewater data with LolliPop, but we need to do it without smoothing (or with minimal smoothing) to avoid introducing bias by kernel smoothing procedures.
Install LolliPop
Follow installation instructions described here. They consist of the following:
Create environment:
Clone repository:
Install dependencies:
Get and prepare data
Make a directory for deconvolution results:
Obtain mutation data, for example from Euler:
rsync -avz --progress euler:/cluster/project/pangolin/work-vp-test/variants/tallymut.tsv.zst .
zstd -d tallymut.tsv.zst
Obtain the latest configuration files from euler:
rsync -avz --progress euler:/cluster/project/pangolin/work-vp-test/var_dates.yaml .
rsync -avz --progress euler:/cluster/project/pangolin/work-vp-test/variant_config.yaml .
rsync -avz --progress euler:/cluster/project/pangolin/work-vp-test/ww_locations.tsv .
rsync -avz --progress euler:/cluster/project/pangolin/work-vp-test/filters_badmut.yaml .
Prepare parameters for the deconvolution:
cat << EOF > deconv_config.yaml
bootstrap: 0
kernel_params:
bandwidth: 0.1
regressor: robust
regressor_params:
f_scale: 0.01
deconv_params:
min_tol: 1e-3
EOF
Run LolliPop
To deconvolve the data, run:
cd ..
ldata="./lollipop_covvfit"
lollipop deconvolute $ldata/tallymut.tsv \
-o $ldata/deconvolved.csv \
--variants-config $ldata/variant_config.yaml \
--variants-dates $ldata/var_dates.yaml \
--deconv-config $ldata/deconv_config.yaml \
--filters $ldata/filters_badmut.yaml \
--seed=42 \
--n-cores=2
Run CovvFit
You are ready to use Covvfit and can proceed to the tutorial here.